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Symmetric gravity–capillary solitary waves with decaying oscillatory tails are known
to bifurcate from infinitesimal periodic waves at the minimum value of the phase
speed where the group velocity is equal to the phase speed. In the small-amplitude
limit, these solitary waves may be interpreted as envelope solitons with stationary
crests and are described by the nonlinear Schrödinger (NLS) equation to leading
order. In line with this interpretation, it would appear that one may also construct
asymmetric solitary waves by shifting the carrier oscillations relative to the envelope
of a symmetric solitary wave. This possibility is examined here on the basis of the
fifth-order Korteweg–de Vries (KdV) equation, a model for gravity–capillary waves
on water of finite depth when the Bond number is close to 1

3
. Using techniques

of exponential asymptotics beyond all orders of the NLS theory, it is shown that
asymmetric solitary waves of the form suggested by the NLS theory in fact are not
possible. On the other hand, an infinity of symmetric and asymmetric solitary-wave
solution families comprising two or more NLS solitary wavepackets bifurcate at
finite values of the amplitude parameter. The asymptotic results are consistent with
numerical solutions of the fifth-order KdV equation. Moreover, the asymptotic theory
suggests that such multi-packet gravity–capillary solitary waves also exist in the full
water-wave problem near the minimum of the phase speed.

1. Introduction
The majority of previous theoretical studies of solitary water waves deal with

symmetric waves. In the absence of surface tension, in fact, it has been established
rigorously (Craig & Sternberg 1988, 1992) that gravity solitary waves travelling
at supercritical speed (higher than the linear-long-wave speed) on water of finite
depth can only be symmetric, consistent with the classical Korteweg–de Vries (KdV)
theory (Whitham 1974, §13.11). In this paper, we wish to examine the possibility of
asymmetric gravity–capillary solitary waves.

Our approach is motivated by the recent discovery of a new class of symmetric
gravity–capillary solitary waves that feature tails with decaying oscillations. The
origin of these waves is different from the familiar solitary waves of the KdV type:
while KdV solitary waves bifurcate from infinitesimal long waves on water of finite
depth, the new type of solitary waves bifurcate from infinitesimal periodic waves of
finite wavenumber at the minimum value of the linear phase speed on water of finite
or infinite depth; such a minimum is present only if the effects of surface tension are
taken into account.

Longuet-Higgins (1989) first provided numerical evidence that gravity–capillary
solitary waves exist on deep water. The waves he computed are all symmetric and
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actually are part of the so-called depression branch because the level of the free
surface at the point of symmetry is below the free-surface level at infinity. Vanden-
Broeck & Dias (1992) later computed two symmetric solitary-wave solution branches,
one corresponding to depression and the other to elevation waves, and recognized
the connection of these solitary waves with small-amplitude periodic wavetrains at
the minimum of the gravity–capillary phase speed.

In related analytical work, Iooss & Kirchgässner (1990) showed rigorously that
small-amplitude, symmetric, elevation and depression gravity–capillary solitary waves
exist on water of finite depth and, more recently, Kirrmann & Iooss (1995) extended
the proof to the case of infinite water depth. Using a similar theoretical approach,
Dias & Iooss (1993) obtained analytical approximations of these solitary waves that
compare favourably with the numerical results of Vanden-Broeck & Dias (1992) in
the small-amplitude limit.

One may gain further insight into the origin of the new class of solitary waves by
noting that, in the small-amplitude limit, they can be viewed as modulated wavepack-
ets; this interpretation also proves useful in discussing asymmetric solitary waves.
As is well known, slow modulations of weakly nonlinear, two-dimensional gravity–
capillary wavepackets are governed by the nonlinear Schrödinger (NLS) equation to
leading order (see, for example, Djordjeric & Redekopp 1977). The NLS equation
admits symmetric envelope-soliton solutions with a ‘sech’ profile corresponding to
locally confined wavepackets, but these packets are not waves of permanent form
in general; the envelope travels with the group velocity while the carrier oscillations
travel with the phase speed. At the minimum of the phase speed, however, the
phase velocity is equal to the group velocity, and it is possible to construct envelope
solitons with stationary crests (in the frame of the envelope) that correspond to
solitary waves with oscillatory tails (Akylas 1993; Longuet-Higgins 1993). In agree-
ment with Dias & Iooss (1993), two symmetric solution branches arise: elevation
waves when the maximum of the envelope coincides with a crest of the carrier, and
depression waves when the maximum of the envelope coincides with a trough of the
carrier.

Based on the above interpretation, it would appear feasible to construct small-
amplitude asymmetric solitary waves as well, by translating the crests of a symmetric
solitary wave relative to its wave envelope. This is consistent with the NLS equation
and, as it turns out, there is no contradiction to all orders of approximation in the
corresponding two-scale perturbation expansion. On the other hand, it seems curious
that asymmetric waves would be possible for any phase shift of the carrier oscillations.
Moreover, as the rigorous existence proofs cited earlier apply to symmetric waves
only, this heuristic reasoning does not guarantee that there exist exact asymmetric
solitary-wave solutions of the water-wave problem; exponentially small corrections to
the perturbation expansion could come into play, for example, precluding asymmetric
solitary waves.

As a first step towards settling these issues, we shall focus on asymmetric solitary-
wave solutions of the fifth-order KdV equation. This model equation can be formally
derived from the full gravity–capillary water-wave problem for weakly nonlinear,
long waves on water of finite depth when the Bond number is close to 1

3
(see, for

example, Hunter & Scheurle 1988). Even though neglecting viscosity cannot be
justified under these flow conditions, the corresponding linear phase speed has a
minimum at a finite wavenumber, and the fifth-order KdV equation is perhaps the
simplest nonlinear dispersive equation that admits the class of solitary-wave solutions
of interest here.
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From previous work, the fifth-order KdV equation is known to have a rich structure
of permanent-wave solutions and, in fact, some asymmetric solitary waves have been
found numerically. Specifically, Zufiria (1987) was mostly interested in periodic waves.
As he followed branches of symmetric periodic waves, he discovered symmetry-
breaking bifurcations and, by increasing the wave period, he was the first to our
knowledge to compute asymmetric solitary waves. In more recent work treating
the (steady) fifth-order KdV equation as a dynamical system, Champneys & Toland
(1993) and Buffoni, Champneys & Toland (1995) proved the existence of an infinity of
homoclinic orbits corresponding to solitary waves. By following symmetric-solution
branches numerically, they also found bifurcations into branches of asymmetric
solitary waves.

In a similar vein to the present investigation, using a two-scale perturbation
expansion near the minimum of the phase speed, Grimshaw, Malomed & Benilov
(1994) constructed small-amplitude symmetric solitary-wavepacket solutions of the
fifth-order KdV equation, analogous to the gravity–capillary waves of Dias & Iooss
(1993). While not emphasized in their paper, the asymptotic theory of Grimshaw et
al. (1994) suggests that asymmetric solitary wavepackets are also admissible solutions
of the fifth-order KdV equation and bifurcate from infinitesimal periodic waves at
the minimum of the phase speed, in accordance with the remarks made earlier. But
this would seem to contradict the numerical findings of Zufiria (1987) and Buffoni et
al. (1995) which suggest that asymmetric solitary waves bifurcate at finite amplitude.

We wish to understand the structure of solitary-wave solutions of the fifth-order
KdV equation near the minimum of the phase speed. To reconcile the differences
noted above between the asymptotic and numerical results, we carry the two-scale
perturbation expansion of Grimshaw et al. (1994) beyond all orders in the small-
amplitude parameter. The revised perturbation theory reveals that an NLS envelope
soliton with stationary crests can in fact remain locally confined only when it is
symmetric, in which case the peak of the envelope coincides with either a crest or a
trough of the carrier wavetrain. Shifting the carrier oscillations relative to the envelope
results in an asymmetric disturbance which fails to be a locally confined permanent-
wave solution of the fifth-order KdV equation: growing (in space) oscillations of
exponentially small magnitude inevitably appear on one side of the wavepacket.
Owing to nonlinear effects, however, this growing tail evolves into a new wavepacket
and, more interestingly, when the carrier oscillations have just the right phase, it is
possible that the whole disturbance terminates, resulting in a solitary wave with two
(asymmetric) packets. Otherwise, a third wavepacket forms and the process continues,
locally confined solitary waves with three or more packets being possible for specific
values of the phase of the carrier.

Based on our analysis using exponential asymptotics, only two solitary-wave solu-
tion branches bifurcate at infinitesimal amplitude; they correspond to single-packet,
symmetric, elevation or depression waves, in agreement with the analytical and nu-
merical results cited earlier. In addition, however, there exists a countable infinity
of symmetric and asymmetric solitary-wave solution families with two packets. But,
unlike single-packet solitary waves, each of these two-packet families bifurcates at
a certain finite amplitude, and it appears that multi-packet solitary waves with any
number of packets can be found as well at finite amplitude. This explains the ‘plethora’
of solitary waves found by Champneys & Toland (1993) and Buffoni et al. (1995).
Moreover, the symmetric and asymmetric branches of two-packet solitary waves in-
tersect in a bifurcation diagram, so it is appropriate to attribute the appearance of
asymmetric solitary waves to a symmetry-breaking bifurcation (Zufiria 1987).
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2. Preliminaries
For the purpose of seeking solitary-wave solutions, we shall work with the normal-

ized steady version of the fifth-order KdV equation

− c u+ 3u2 + uxx + uxxxx = 0 (−∞ < x < ∞), (2.1)

where c stands for the wave speed, and impose the boundary conditions

u→ 0 (x→ ±∞). (2.2)

According to (2.1), the phase speed of infinitesimal periodic waves of wavenumber
k is given by c(k) = −k2 + k4, and its minimum value cm = − 1

4
is attained at

k = km = 1/
√

2. As already indicated, we are interested in localized wavepacket
solutions near the minimum of the linear phase speed, so c will be taken to be close
to cm,

c = cm − 2ε2, (2.3)

assuming the parameter ε to be small (0 < ε � 1).
In view of (2.2), the tails of a solitary-wave solution are governed by the linearized

version of (2.1), which has four independent solutions:

e±εγx cos kcx and e±εγx sin kcx,

where

kc = 1
2

(
1 +

(
1 + 8ε2

)1/2
)1/2

= km
(
1 + ε2 + · · ·

)
, (2.4a)

γ =
1

2ε

(
−1 +

(
1 + 8ε2

)1/2
)1/2

= 1− ε2 + · · · . (2.4b)

Enforcing conditions (2.2) rules out the two growing solutions, proportional to e−εγx

for x → −∞ and to eεγx for x → ∞, and the admissible far-field solutions can be
combined into the following form:

u ∼ a± e−εγ|x| cos(kcx+ φ±) (x→ ±∞). (2.5)

Note, however, that (2.1) is invariant under translations in x. Therefore, we may
specify the amplitude parameter a− arbitrarily as this amounts to fixing the location
of the origin x = 0; the phase constant φ− then is the only free parameter far upstream
(x → −∞). If now (2.1) is thought of as a propagation (marching) problem with
known upstream conditions it would seem unlikely in general to eliminate the two
growing solutions far downstream (x → ∞) with only one free upstream parameter
(φ−), unless u(x) is assumed to be symmetric with respect to some point. Nevertheless,
as it turns out (see §7), it is still possible to find asymmetric solitary-wave solutions
of (2.1) for specific values of φ−.

3. Two-scale perturbation expansion
Based on a standard two-scale expansion, Grimshaw et al. (1994) constructed

symmetric solitary-wavepacket solutions of the fifth-order KdV equation near the
minimum of the phase speed. In this section, we shall briefly re-examine their asymp-
totic theory in connection with the possibility of asymmetric solitary wavepackets;
this will bring out the need for a refined perturbation theory that takes into account
exponentially small terms.
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At the minimum of the linear phase speed, the group velocity is equal to the phase
speed cm of infinitesimal periodic waves of wavenumber km. This suggests seeking
solitary-wave solutions of the fifth-order KdV equation near this minimum in the form
of small-amplitude modulated wavepackets such that both the envelope and the carrier
oscillations travel with speed c, slightly less than cm in view of (2.3) and (2.5). Accord-
ingly, u is taken to depend on x and the ‘slow’ variable X = εx, and (2.1) becomes

−c u+ uxx + uxxxx + 3u2 + 2εuxX + 4εuxxxX

+ ε2uXX + 6ε2uxxXX + 4ε3uxXXX + ε4uXXXX = 0. (3.1)

The analysis proceeds by introducing the two-scale expansion

u = ε
{
A(X) eikcx + c.c.

}
+ ε2

{
A2(X) e2ikcx + c.c.+ A0(X)

}
+ · · · , (3.2)

where c.c. stands for the complex conjugate. Upon substitution into (3.1), it is found
that A2 and A0 are related to A by

A2 = − 4
3
A2 − 128

9
ikm εAAX + O(ε2), A0 = −24 |A|2 + O(ε2),

and, correct to O(ε), A is governed by

A− AXX − 76|A|2A− 2ikmε(AX − AXXX)− 128
3

ikmε|A|2AX + O(ε2) = 0. (3.3)

To leading order, this is the NLS equation in steady form.
It is straightforward to show that (3.3) admits a locally confined (envelope-soliton)

solution,

A(X) = S(X) eiφ(X),

where

S =
1√
38

sechX + O(ε2), φ = φ0 −
187

57
√

2
ε tanhX + O(ε2),

φ0 being an arbitrary phase constant. Combining this expression for the wave
envelope with the carrier oscillations, expansion (3.2) then yields, correct to O(ε2),

u =

√
2

19
ε cos(kmx+ φ0) sechX + ε2

{
187

57
√

19
sin(kmx+ φ0) sechX tanhX

− 4
19

(
3 + 1

3
cos(2kmx+ 2φ0)

)
sech2X

}
+ O(ε3). (3.4)

This asymptotic solution describes a locally confined wavepacket with crests moving
at the same speed as the envelope so, as a whole, (3.4) is a solitary wave. In particular,
there are two symmetric (with respect to x = 0) solution branches when the phase
constant φ0 = 0 or π, φ0 = 0 corresponding to elevation waves and φ0 = π to
depression waves, in agreement with Grimshaw et al. (1994).

Apart from these symmetric solitary-wave solutions, however, (3.4) suggests that
asymmetric solitary waves are possible for all values of φ0 other than 0 or π, and
it would appear that these waves also bifurcate from periodic waves of infinitesimal
amplitude. The numerical results of Zufiria (1987) and Buffoni et al. (1995), on the
other hand, indicate that asymmetric solitary waves exist at finite amplitude only.
Moreover, based on the asymptotic behaviours (2.5) at the solitary-wave tails, it seems
unlikely that solitary waves would be possible for all values of φ0; this would imply
that one could eliminate the two growing solutions of the fifth-order KdV equation
far downstream for any value of the upstream phase φ−.
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There is reason to suspect, therefore, that the predictions of the asymptotic ex-
pression (3.4) regarding asymmetric solitary waves are misleading. This discrepancy
apparently cannot be remedied by carrying the two-scale expansion (3.2) to higher
order: it can be checked that the wave envelope remains locally confined to all
orders so one could still construct asymmetric solitary waves by shifting the carrier
oscillations.

The cause of the difficulty must lie beyond all orders of the standard two-scale
expansion (3.2), suggesting the need for a refined perturbation theory that accounts for
exponentially small corrections. A similar approach, utilizing exponential asymptotics,
has also proven useful in instances where KdV solitary waves develop oscillatory tails
of exponentially small amplitude (see, for example, Pomeau, Ramani & Grammaticos
1988; Yang & Akylas (1995, 1996) and references given therein). The problem
at hand is more complicated, however, because the solitary waves of interest here
are wavepackets involving a carrier signal and its envelope which have different
lengthscales.

The potential significance of exponentially small terms is brought out more clearly
by working in the wavenumber domain. Taking the Fourier transform with respect
to the slow variable X,

û(x,K) =
1

2π

∫ ∞
−∞
u(x,X) e−iKX dX,

expansion (3.2) yields

û = ε sech
πK

2

{
1√
38

cos(kmx+ φ0)− εK
[
i

187

114
√

19
sin(kmx+ φ0)

+ 2
19

(
3 + 1

3
cos(2kmx+ 2φ0)

)
coth 1

2
πK

]
+ · · ·

}
. (3.5)

It is interesting that this expansion, unlike its counterpart (3.4) in the physical domain,
becomes disordered when K = O(1/ε). Based on previous experience (Akylas & Yang
1995), this non-uniformity suggests that û(x,K) has singularities of exponentially
small strength – the common factor sech (πK/2) in (3.5) is exponentially small for
K = O(1/ε) – close to the real K-axis. These singularities in turn reflect the presence
of exponentially small oscillatory wave tails depending on X/ε in the physical domain.
Since the envelope equation (3.3) was derived on the assumption that A depends on
the slow variable X only, one has to return to the original equation (3.1) to compute
these tails.

4. Revised perturbation theory
In line with the remarks above, we now revise the perturbation theory to account

for exponentially small terms, beyond all orders of the standard two-scale expansion
(3.2).

Following Akylas & Yang (1995), we find it convenient to work in the wavenumber
domain. Taking the Fourier transform with respect to X, (3.1) is converted to an
integral–differential equation for û(x,K):

(−c− ε2K2 + ε4K4)û+ 2iεK(1− 2ε2K2)ûx

+(1− 6ε2K2)ûxx + 4iεKûxxx + ûxxxx + 3û2 = 0. (4.1)
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The breakdown of expansion (3.5) when εK = O(1) suggests the uniformly valid
two-scale expression

û = ε sech ( 1
2
πK)U(x, κ), (4.2)

in terms of the scaled wavenumber variable κ = εK , with

U ∼ 1√
38

cos(kmx+ φ0)− i
187

114
√

19
κ sin(kmx+ φ0)

− 2
19
|κ|
(
3 + 1

3
cos(2kmx+ 2φ0)

)
+ · · · (κ→ 0). (4.3)

The goal of the ensuing analysis is to determine the behaviour of U(x, κ) near its
singularities in the κ-plane; upon inverting the Fourier transform, we shall then
compute the exponentially small terms that arise in the physical domain from these
singularities.

Substituting (4.2) into (4.1), U(x, κ) satisfies

(−c− κ2 + κ4)U + 2iκ(1− 2κ2)Ux + (1− 6κ2)Uxx + 4iκUxxx

+Uxxxx + 3 cosh
πκ

2ε

∫ ∞
−∞

U(x, λ)U(x, κ− λ)
cosh(πλ/2ε) cosh(π(κ− λ)/2ε) dλ = 0. (4.4)

The solution of (4.4) is posed as a Fourier series

U(x, κ) =

∞∑
n=−∞

An(κ)einθc , (4.5)

in terms of the total phase θc = kcx+ φ0, where, in view of (4.3),

A0 ∼ − 6
19
|κ|+ · · · (κ→ 0), (4.6a)

A±1 ∼
1

2
√

38
∓ 187

228
√

19
κ+ · · · (κ→ 0), (4.6b)

A±2 ∼ − 1
57
|κ|+ · · · (κ→ 0), (4.6c)

and A±n = O(κ|n|−1) (|n| > 2). Upon substitution of (4.5) into (4.4), the An (n =
0,±1,±2, . . .) are governed by the following system of coupled integral equations:{
−c− κ2 + κ4 − 2nkcκ(1− 2κ2)− n2k2

c (1− 6κ2) + 4n3k3
cκ+ n4k4

c

}
An

+ 3 cosh
πκ

2ε

∞∑
p=−∞

∫ ∞
−∞

Ap(λ)An−p(κ− λ)
cosh(πλ/2ε) cosh(π(κ− λ)/2ε) dλ = 0

(n = 0,±1,±2, . . .). (4.7)

No approximation has been made thus far, and the equation system (4.7) together
with (4.5) and (4.2) is entirely equivalent to the original equation (3.1). However, in
the limit ε → 0, the main contribution to the convolution integrals in (4.7) comes
from the range 0 < λ < κ (κ > 0), κ < λ < 0 (κ < 0) as long as κ is not too close
to ±km (km − |κ| � O(ε); see §5). Also, since u is real, An(−κ) = A−n(κ) on the real
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κ-axis, and it suffices to consider An (n > 0) only. Therefore, taking into account
(2.3) and (2.4a), (4.7) simplifies to

{κ+ (n+ 1)km}2 {κ+ (n− 1)km}2 An + 6

n∑
p=0

sgn κ

∫ κ

0

Ap(λ)An−p(κ− λ) dλ

+12

∞∑
p=1

sgn κ

∫ κ

0

Ap(−λ)An+p(κ− λ) dλ = 0 (n > 0) (4.8)

in the limit ε→ 0.
Before proceeding to analyse equations (4.8), it is interesting to compare the

approach taken here with the standard two-scale expansion outlined in §3. It is easy
to check that equations (4.8) are consistent with (4.6) as κ → 0, and the harmonics
in the Fourier series (4.5) are ordered in this limit. The proposed expression (4.2)
for û(x,K), therefore, merges smoothly in the matching region 1 � |K| � 1/ε with
expansion (3.5) which derives from the standard two-scale expansion (3.2). On the
other hand, (4.2), combined with (4.5) and (4.8), remains valid for κ = O(1) where,
as will be seen, the Fourier coefficients An(κ) have singularities; these singularities
amount to exponentially small terms in the physical domain, beyond all orders of the
two-scale expansion (3.2).

Specifically, the coefficient ofAn in (4.8) vanishes when κ = −(n±1)km (n > 0) and
An(κ) would appear to be singular there. Out of these possible singularities, those
closest to the origin are located at κ = ±km (the origin κ = 0 is a regular point in
view of (4.6)) and make the dominant contribution.

5. Behaviour near the singularities
Attention is now focused on the local behaviour ofAn(κ) (n > 0) near κ = −km. As

expected,A0(κ) andA2(κ) are the most singular since their coefficients in (4.8) vanish
when κ = −km. However, through the convolution integrals in (4.8), the singularities
of A1(κ) at κ = ±km and of A3(κ) at κ = −km also participate in the dominant
balance near κ = −km (see the Appendix for details). It turns out that

A0 ∼
C

(κ+ km)4
, A2 ∼

C

(κ+ km)4
(κ→ −km), (5.1a)

A1 ∼ −
16√
38

C

(κ+ km)3
, A3 ∼ −

8

9
√

38

C

(κ+ km)3
(κ→ −km), (5.1b)

the rest of theAn being less singular. The constant C above is determined by solving
(4.8) subject to (4.6) numerically. Following the procedure described in the Appendix,
we compute C = −0.011. It is worth noting that C depends on all the coefficients
An(κ) of the Fourier expansion (4.5), so it contains information beyond all orders of
the standard two-scale expansion.

The asymptotic behaviours (5.1) were deduced on the basis of the approximate
equation system (4.8) for the Fourier coefficients An(κ). Returning to the exact
system (4.7), however, note that, in view of (4.6) and (5.1), it is not permissible to
approximate the convolution integrals in (4.7) by those in (4.8) when κ is very close
to ±km, km−|κ| 6 O(ε). Therefore, (5.1) are expected to break down in the immediate
vicinity of κ = −km.

To handle this complication, following a matched-asymptotics procedure in terms
of the ‘inner’ wavenumber variable σ = (κ+ km)/ε, we shall determine local solutions
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for A0 and A2, valid when σ = O(1). Specifically, the asymptotic behaviours (5.1)
suggest the rescalings

A0 =
1

ε4
Φ0(σ), A2 =

1

ε4
Φ2(σ), (5.2a)

A1 =
1

ε3
Φ1(σ), A3 =

1

ε3
Φ3(σ). (5.2b)

Substituting (5.2) into (4.7) taking into account (4.6), to leading order, it is found
that Φ0 = Φ2 ≡ Φ and

Φ1(σ) = − 24√
38

∫ ∞
−∞

dl e−πl/2 sech ( 1
2
πl) Φ(σ − l), Φ3(σ) = 1

18
Φ1(σ),

where Φ(σ) satisfies the linear integral equation

(σ2 + 1) Φ(σ)−
∫ ∞
−∞

dl l e−πl/2 cosech ( 1
2
πl) Φ(σ − l)

−
∫ ∞
−∞

dl e−πl/2 sech ( 1
2
πl)

∫ ∞
−∞

dl1 e−πl1/2 sech ( 1
2
πl1) Φ(σ − l − l1) = 0. (5.3)

Furthermore, to be consistent with (5.1), the matching condition

Φ ∼ C

σ4
(σ →∞) (5.4)

is imposed.
Guided by previous experience (Akylas & Yang 1995), we pose the solution of (5.3)

in the form

Φ(σ) =

∫
L

e−ησ Ψ (η) dη, (5.5)

where the contour L extends from η = 0 to ∞ with Re ησ > 0. The integral equation
(5.3) then formally transforms into a second-order differential equation for Ψ (η):

d2Ψ

dη2
+

(
1− 6

sin2 η

)
Ψ = 0, (5.6)

where, in view of (5.4), Ψ (η) ∼ 1
6
C η3 (η → 0).

It can be readily verified that cos η/ sin2 η is a solution of (5.6), although not
consistent with the matching condition as η → 0. Making use of this particular
solution, the desired solution is found to be

Ψ (η) = 5
12
C

(
2

sin η
+

cos2 η

sin η
− 3η cos η

sin2 η

)
.

Returning to (5.5), one then has

(σ2 + 1) Φ(σ) = 6

∫
L

e−ησ

sin2 η
Ψ (η) dη,

and rotating the integration path L to the imaginary η-axis gives

(σ2 + 1) Φ(σ) ∼ − 5
12
C (σ → ±i).
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Hence, Φ(σ) has simple-pole singularities at σ = ±i:

Φ(σ) ∼ ∓i
D

σ ∓ i
(σ → ±i), (5.7)

where D = − 5
24
C = 0.0023.

Combining (5.7) with (4.2), (4.5) and (5.2), the simple-pole singularities of Φ(σ) at
σ = ±i translate into simple-pole singularities of û(x,K) at K = −(km/ε)± i:

û ∼ 2D

ε3
exp

(
−πkm

2ε

)
1 + e2iθm

K + km/ε∓ i

(
K → −km/ε± i

)
, (5.8a)

where θm = kmx+φ0. Furthermore, since u(x,X) is real, there is an additional pair of
simple-pole singularities at K = (km/ε)± i:

û ∼ −2D

ε3
exp

(
−πkm

2ε

)
1 + e−2iθm

K − km/ε∓ i

(
K → km/ε± i

)
. (5.8b)

As expected, the residues of these singularities in the wavenumber domain are
exponentially small as ε→ 0.

6. Single-packet solitary waves
Returning now to the physical domain, recall that the upstream amplitude param-

eter a− in the asymptotic expressions (2.5) for the solitary-wave tails can be specified
arbitrarily as this fixes the origin x = 0. For convenience, we shall choose the value
of a− as predicted by the straightforward expansion (3.4).

Accordingly, in taking the inverse Fourier transform

u(x,X) =

∫
C
û(x,K) eiKX dK, (6.1)

the contour C is indented to pass below the poles of û(x,K) at K = ±(km/ε)− i. With
this choice of C, the singularities in (5.8) play no role for X < 0 and, in view of (4.2),
the dominant contribution to the wave profile far upstream comes from the pole of
sech (πK/2) at K = −i:

u ∼
√

8
19
ε eεx cos(kmx+ φ0) (x→ −∞), (6.2a)

consistent with the two-scale expansion (3.4) to leading order. The downstream
disturbance, on the other hand, apart from a decaying oscillatory tail analogous to
(6.2a), in general features oscillatory waves of exponentially small but growing (in
space) amplitude owing to the contribution of the singularities in (5.8):

u ∼ −16πD

ε3
exp

(
−πkm

2ε

)
sinφ0 eεx cos(kmx+ φ0)

+
√

8
19
ε e−εx cos(kmx+ φ0) (x→∞). (6.2b)

Based on (6.2), it is now clear that only symmetric small-amplitude wavepackets,
for which φ0 = 0 or π so sinφ0 = 0, remain locally confined and hence correspond
to genuine solitary-wave solutions; shifting the carrier oscillations of a symmetric
solitary wavepacket relative to its envelope results in an asymmetric disturbance
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which, however, fails to be a locally confined steady solution of the fifth-order KdV
equation by exponentially small terms.

According to the revised perturbation theory, therefore, only two solitary-wave
solution branches bifurcate from periodic waves of infinitesimal amplitude at the
minimum of the phase speed; they correspond to symmetric elevation (φ0 = 0) or
depression (φ0 = π) waves, consistent with the existence proofs for gravity–capillary
waves (Iooss & Kirchgässner 1990; Kirrmann & Iooss 1995). As already noted,
however, Champneys & Toland (1993) and Buffoni et al. (1995) found a plethora of
other solitary waves close to the minimum of the phase speed that bifurcate at small
but finite amplitude, and one wonders whether the revised perturbation theory can
capture these solution branches.

The key to addressing this question is to note that, according to the asymptotic result
(6.2b), u grows exponentially far downstream when φ0 6= 0, π; owing to nonlinear
effects a second wavepacket then is expected to arise, and it is interesting to ask
whether it is possible that the wave disturbance decays to zero after two (or more)
wavepackets have formed, resulting in a solitary wave with more than one packet.
This possibility is examined in the next section.

7. Two-packet solitary waves

The construction of two-packet solitary waves involves piecing together two
wavepackets. For this purpose, we shall rely on the asymptotic results (6.2) to
ensure that the tails of the individual packets match smoothly.

In preparation for this matching, without carrying the exponential asymptotics to
higher order, we shall refine expressions (6.2) heuristically. According to (2.4), we
replace the carrier wavenumber km with the more accurate value kc and use εγ instead
of ε for the decay and growth rate of the tails, so that far upstream

u ∼
√

8
19
ε eεγx cos(kcx+ φ−) (x→ −∞) (7.1a)

for some φ−. Furthermore, taking into account the O(ε2) corrections in the two-
scale expansion (3.4), symmetric solitary waves about x = 0 (φ0 = 0, π) require

that φ̃− ≡ φ− − 187

57
√

2
ε = 0, π in which case no growing oscillations are expected

downstream. Hence, (6.2b) is replaced with

u ∼ −16πD

ε3
exp

(
−πkc

2ε

)
sin φ̃− eεγx cos(kcx+ φ−)

+
√

8
19
ε e−εγx cos(kcx+ φ−) (x � 1). (7.1b)

One also expects O(ε) phase shifts of the carrier oscillations downstream but it turns
out that these corrections play no role to the order of approximation considered
in the analysis below. Based on (7.1), we now proceed to construct solitary waves
consisting of two wavepackets.

In addition to being invariant under a translation of the origin, the steady fifth-
order KdV equation (2.1) preserves its form under the change of coordinate x→ −x.
It is therefore legitimate to read (7.1) from the opposite direction and to translate the
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whole solution by a distance L. Specifically, if, for some φ+ with φ̃+ ≡ φ+ + 187

57
√

2
ε,

u ∼ 16πD

ε3
exp

(
−πkc

2ε

)
sin φ̃+ e−εγ(x−L) cos(kcx− kcL+ φ+)

+
√

8
19
ε eεγ(x−L) cos(kcx− kcL+ φ+) (1 � x � L) (7.2a)

on the left-hand tail of a packet centred at x = L, it follows that

u ∼
√

8
19
ε e−εγ(x−L) cos(kcx− kcL+ φ+) (x � L) (7.2b)

on the right-hand tail. Hence, two-packet solitary waves can be constructed if there
exist some L, φ− and φ+ such that (7.1b) perfectly matches (7.2a). The parameter L
in (7.2) then measures the distance between the centres of the two packets that make
up the solitary wave. Without any loss of generality, we shall take −π < φ± < π in
the discussion below.

Perfect matching of (7.1b) with (7.2a) requires that

| sin φ̃−| = | sin φ̃+| =
ε4

4
√

38πD
exp

(
πkc

2ε
− εγL

)
, (7.3a)

φ+ + χ+ = kcL+ φ− + 2m1π, (7.3b)

φ+ − χ− = kcL+ φ− + 2m2π, (7.3c)

where χ+ = 0(π) if 0 < φ̃+ < π (−π < φ̃+ < 0), χ− = π(0) if 0 < φ̃− < π

(−π < φ̃− < 0), and m1, m2 are integers. Subtracting (7.3c) from (7.3b) yields

χ+ + χ− = 2(m1 − m2)π.

Therefore, the phase constants φ̃+ and φ̃− must have opposite signs, and condition

(7.3a) can be satisfied in two ways: (i) φ̃+ = −φ̃−; (ii) φ̃+ = φ̃−+ π (if −π < φ̃− < 0)

or φ̃+ = φ̃− − π (if 0 < φ̃− < π).
In view of (7.1a) and (7.2b), case (i) corresponds to solitary waves that are symmetric

with respect to x = 1
2
L and consist of two identical asymmetric (about their own

centres) wavepackets. Also, in this case, (7.3b) gives

kcL = mπ − 2φ− + (−1)mπ, (7.4)

where m is an integer, even and odd values of m corresponding to positive and
negative values of the phase constant φ−, respectively. Equations (7.3a) and (7.4) can
be combined to yield an algebraic equation for φ−:

| sin φ̃−| =
ε4

4
√

38πD
exp

(
πkc

2ε
− εγ (m+ (−1)m) π

kc
+

2εγφ−
kc

)
. (7.5)

On the other hand, case (ii) corresponds to asymmetric waves in general and the
distance L, correct to O(1), is given by

kcL = mπ, (7.6)

m being an integer that labels the solution branches as in case (i) above. Upon
substitution of (7.6) into (7.3a), it is found that the phase constant φ− satisfies

| sin φ̃−| =
ε4

4
√

38πD
exp

(
πkc

2ε
− εγmπ

kc

)
. (7.7)
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It is clear from (7.4) and (7.6) that the integer m controls the number of carrier
wavelengths between the centres of the two packets that make up a solitary wave.
The present asymptotic theory is expected to provide a good approximation to these
waves when m is large, so that the two packets are well separated and the connection
formulae (7.1) and (7.2) are valid. We also remark that the ignored O(ε) phase shifts
of the carrier oscillations in (7.1b) and (7.2a) result in O(ε) corrections to L in (7.4)
and (7.6) that, in turn, cause O(ε2) changes in the arguments of the exponentials in
equations (7.5) and (7.7) for φ−. These corrections, therefore, impact φ− to O(ε2) and
are insignificant to the order considered here.

Since | sin φ̃−| cannot exceed 1, equations (7.5) and (7.7) have solutions for a fixed
value of m, only if ε is above a certain threshold value which decreases as m is
increased. Hence, all solution branches of symmetric and asymmetric two-packet
solitary waves bifurcate at finite amplitude, consistent with the results of Champneys
& Toland (1993) and Buffoni et al. (1995). Also, for a fixed value of ε, there exists an
infinite number of such solution branches corresponding to values of m greater than
a certain minimum.

From (7.5) and (7.7), symmetric and asymmetric solution branches corresponding
to the same m bifurcate at slightly different values of the amplitude parameter
ε. Symmetric branches intersect asymmetric branches, however, at the minimum

amplitude of asymmetric waves where φ̃± = ± 1
2
π or ∓ 1

2
π according to (7.7). It is

therefore possible to encounter asymmetric solitary-wave branches bifurcating from
symmetric ones as in Zufiria (1987) and Buffoni et al. (1995).

It is believed that the procedure outlined above for constructing two-packet solitary
waves can be generalized to discuss solitary waves with any number of packets but
the details are complicated by the presence of more than one matching region.
In particular, the interior wavepacket(s) of a multi-packet solitary wave feature
growing and decaying oscillations on both their left-hand and right-hand tails, so
the connection formulae (7.1) and (7.2) need to be modified before matching these
tails. In analogy with two-packet solitary waves, it is expected that solution families
with n packets exist at finite amplitude only and are characterized by n − 1 integers
that control the number of carrier wavelengths between the maximum peaks of the
packets.

We now turn to a discussion of numerical solutions to confirm the predictions of
the asymptotic theory for two-packet solitary waves.

8. Numerical results
As there are exponentially growing solutions in the far field that could give rise

to numerical instability, it is not convenient to solve the fifth-order KdV equation
numerically as a one-way marching problem, so we follow a shooting procedure
instead. Truncating the computational domain at some large distance x = ±x∞,
equation (2.1) is integrated from both x = −x∞ and x = x∞ to a matching point in
between, x = 0 say, using a fourth-order Runge–Kutta method and starting conditions
of the form (2.5). As remarked earlier, a− can be specified arbitrarily; we choose
a− =

√
8/19 ε, consistent with (7.1a). We thus have three free parameters (φ± and

a+) while there are four quantities (u, ux, uxx and uxxx) to be matched at x = 0.
Naturally, mismatches are present at x = 0 in general so it involves some searching
in the parameter space to find a smooth solution. After a solution is found, the whole
branch on which this solution lies can be traced by slowly varying the parameters.
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Figure 1. Comparison, for various values of m, of asymptotic results (- - - -) against numerical
results (◦) for the minimum amplitudes of two-packet solitary-wave solution families. (a) Minimum
amplitude of symmetric waves; (b) difference between the minimum amplitudes of asymmetric and
symmetric waves corresponding to the same value of m.
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Figure 2. Solution branches of symmetric and asymmetric two-packet solitary waves corresponding
to m = 19 and m = 20 in a bifurcation diagram where the upstream phase constant φ− is plotted
against the wave speed c = − 1

4
−2ε2. Both the predictions of the asymptotic theory (—— , symmetric

waves; - - - -, asymmetric waves) and numerical results (◦ , symmetric waves; 3, asymmetric waves)
are shown.

A systematic study of two-packet solitary-wave solutions was carried out. Fig-
ure 1(a) shows the numerically computed minimum value of ε at which symmetric
solution branches bifurcate for various values of m. The predictions of the asymptotic
theory as obtained from (7.5) are also plotted for comparison. As expected, the
asymptotic theory is valid for large m, when the two packets are well separated and
the minimum amplitude is small, but there is reasonable agreement even when m
is not all that large. The difference between the minimum amplitudes of symmetric
and asymmetric waves corresponding to the same value of m is shown in figure 1(b)
for various m; the difference is very small but is never zero. While there is good
agreement for large m, the asymptotic and numerical results exhibit opposite trends
as m decreases and, not unexpectedly, the asymptotic theory fails when m is small.

Figure 2 shows four solution branches of symmetric and asymmetric solitary waves
corresponding to m = 19 and m = 20, in a bifurcation diagram where the upstream
phase constant φ− is plotted against the wave speed c = − 1

4
−2ε2. For these moderate
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Figure 3. Profiles of numerically computed two-packet solitary waves. (a) Symmetric wave
corresponding to m = 19, c = −0.2615, φ− = −0.303π; (b) asymmetric wave corresponding to
m = 20, c = −0.2614, φ− = 1.24π.

values of m, the predictions of the asymptotic theory (equations (7.5) and (7.7)) agree
qualitatively with the numerical computations. Each solution branch bifurcates at a
finite value of ε where a turning point occurs and the wave speed attains its maximum
value. For values of c less than the maximum value, there are four solitary-wave
solutions, two symmetric and two asymmetric, corresponding to the same value of m.
Also, it is interesting to note that the asymmetric branches intersect the symmetric
branches near their turning points, consistent with the numerical results of Buffoni
et al. (1995). Figure 3 displays the wave profiles of two solitary waves belonging to
these branches. In both examples, as expected, the two packets that make up the
solitary waves are asymmetric about their own centres. In figure 3(a), these packets
are identical and form a symmetric wave as a whole while, in figure 3(b), they are
different but still match smoothly to form an asymmetric wave.

9. Discussion
Using the fifth-order KdV equation as a simple model, we studied small-amplitude

gravity–capillary solitary waves travelling with speed slightly below the minimum
linear phase speed. In addition to the two previously known symmetric solution
branches, that bifurcate from infinitesimal periodic waves at the minimum phase
speed and correspond to NLS envelope solitons with stationary crests, there is
an infinite number of symmetric and asymmetric solitary waves featuring more
than one such wavepacket. These multi-packet solution branches bifurcate at finite
amplitude, however, and cannot be captured by the NLS theory; in piecing together
the individual wavepackets that make up a multi-packet solitary wave, it is necessary
to take into account exponentially small terms, beyond all orders of the standard
two-scale expansion on which the NLS equation is based.

Even though the fifth-order KdV equation is of limited validity as a model for
gravity–capillary waves, the general picture that emerges from the asymptotic theory
regarding small-amplitude solitary waves is expected to persist in the full water-wave
problem close to the minimum of the phase speed. The only essential difference is
the value of the constant D that enters in the connection formulae (7.1) and (7.2);
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as it involves all nonlinear and dispersive terms, computing D in the full water-wave
problem would not be an easy task. Apart from water waves, the conclusions of
the asymptotic theory should also hold close to a phase-speed extremum in other
dispersive wave systems. One example is interfacial waves for which Benjamin (1992)
has found symmetric single-packet solitary waves using a model equation.

The asymptotic theory is valid in the small-amplitude limit when the packets that
make up a solitary wave are well separated. This brings up the question as to what
happens to the branches of multi-packet solitary waves when the amplitude parameter
ε is increased and the individual packets lose their identity as they merge together.
Although we are not prepared to address this question, the recent numerical results
of Dias, Menasce & Vanden-Broeck (1996) seem to provide a clue: following the
symmetric branch of single-packet elevation solitary waves in deep water away from
its bifurcation point at infinitesimal amplitude, Dias et al. (1996) encountered turning
points where new symmetric wave profiles, with more than one hump separated by
smaller oscillations, bifurcate. It would appear that these multi-modal waves are
related to symmetric multi-packet solitary waves. Their precise connection needs
further investigation, however, and the fate of asymmetric-solution branches remains
an entirely open question.

In recent laboratory observations of gravity–capillary waves in a wind-wave tank,
Zhang (1995) found remarkably good agreement between some of the observed
wave profiles and large-amplitude, symmetric, gravity–capillary solitary waves of
depression on deep water as computed by Longuet-Higgins (1989). This suggests that
the potential flow assumption is a reasonable approximation, and makes one wonder
whether multi-packet solitary waves play a part as well.

We wish to thank Dr Frédéric Dias for useful discussions on this topic. This work
was supported by the National Science Foundation Grant DMS-9404673.

Appendix. Details of the asymptotic analysis
Here we give further details of the dominant-balance analysis that leads to the

asymptotic expressions (5.1) and outline the numerical procedure for determining the
constant C that appears in (5.1).

As remarked in §5, the coefficient of An(κ) in (4.8) vanishes when κ = −(n± 1) km,
and all harmonics An(κ) (n > 0) are expected to be singular there owing to their
nonlinear coupling via the convolution integrals in (4.8). Since the origin κ = 0
actually is a regular point in view of (4.6), the singularities closest to the origin are
located at κ = ±km and make the dominant contribution.

Attention is now focused on the singularities of An(κ) (n > 0) at κ = −km; since
their coefficients in (4.8) vanish when κ = −km, A0(κ) and A2(κ) are expected to be
the most singular there. Note, however, that through the last sum of convolution
integrals in (4.8), the singularities of other An(κ) (n > 0) at κ = km also participate in
the dominant balance as κ→ −km.

Specifically, assuming that

A0 ∼
C (0)

(km ∓ κ)N
(κ→ ±km), A2 ∼

C (2)

(km + κ)N
(κ→ −km), (A 1a)

where N is to be determined, it follows from (4.8), taking into account (4.6), that

A1 ∼
C (±1)

(km ∓ κ)N−1
(κ→ ±km), A3 ∼

C (3)

(km + κ)N−1
(κ→ −km). (A 1b)
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The constants C (m) (m = 0,±1, 2, 3) are related by

C (0) =
2

19

18C (0) + C (2)

(N − 1)(N − 2)
− 3√

38

C (1) + C (−1)

N − 2
, (A 2)

C (2) =
2

19

18C (2) + C (0)

(N − 1)(N − 2)
− 3√

38

C (−1) + C (3)

N − 2
, (A 3)

C (−1) = − 24√
38

C (0) + C (2)

N − 1
, (A 4)

C (1) = − 8

3
√

38

C (0)

N − 1
, (A 5)

C (3) = − 8

3
√

38

C (2)

N − 1
. (A 6)

The rest of the harmonics are less singular at κ = ±km and do not take part in the
dominant balance as κ→ −km.

Substituting (A 4)–(A 6) into (A 2) and (A 3) yields

C (0) =
4C (0) + 2C (2)

(N − 1)(N − 2)
, C (2) =

4C (2) + 2C (0)

(N − 1)(N − 2)
.

Consistency between these two relations requires that C (0) = ±C (2), and N is deter-
mined accordingly to be N = 4 if C (0) = C (2) or N = 3 if C (0) = −C (2). Out of these
two possibilities, N = 4 results in stronger singularities and provides the dominant
behaviour as κ→ −km (assuming that C (0) = C (2) ≡ C is not zero, of course). Hence,
N = 4 and, from (A 4) and (A 6),

C (−1) = − 16√
38

C, C (3) = − 8

9
√

38
C.

The proposed expressions (A 1) then agree with (5.1).
To determine the constant C , we solve the equation system (4.8) for An(κ) (n > 0)

by series expansions in the form

A0 =

∞∑
p=2

b0,p |κ|p−1, (A 7a)

An =



∞∑
p=n

bn,p κ
p−1 (κ > 0)

∞∑
p=n

b̃n,p κ
p−1 (κ < 0)

(n > 1), (A 7b)

with b1,1 = b̃1,1 =
1

2
√

38
, b0,2 = − 6

19
, b̃2,2 = −b2,2 =

1

57
, b1,2 = b̃1,2 = − 187

228
√

19
, etc.,

according to (4.6). Upon substitution of (A 7) into (4.8), the coefficients bn,p and b̃n,p
(n > 0, p > n) satisfy certain recurrence relations which are then solved numerically
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as described in Yang (1996). It turns out that b0,2p+1 = 0 and, consistent with (5.1), it
is verified numerically that

b0,2p ∼ C
√

2

3
2p+4 p(p+ 1)(p+ 2) (p→∞),

b̃2,p ∼ C
(−
√

2)p+1

3
p(p+ 1)(p+ 2) (p→∞),

where C = −0.011.
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